Volume and Density WORKSHEET

NAME
Block \qquad Date \qquad /__1 _ ,

In the SI system, volume can be expressed in two ways, one is in liters and the other as a unit of distance "cubed" such as cm^{3}. When using distance the "cube" is because you must multiply a distance times a distance times a distance. It is very important that all three distances are in the same unit such as cm or m or mm . For a cube the formula is length X width X height. Once you have the volume and the mass, it is easy to calculate the density of an object, that is, the amount of stuff in a certain space. To find the density, the formula is mass/volume. Work the following problems for practice; you'll need it on an upcoming lab and chapter test.

1. What is the volume of a box measuring $1 m \times 5 m \times 6 m$? (Remember units)
2. What is the volume of a box measuring $2 \mathrm{~cm} \times 7 \mathrm{~cm} \times 3 \mathrm{~cm}$?
3. What is the volume of a cube measuring 5 cm on each side?

You must have the correct UNITS in order to get credit!
4. What is the volume of a cube measuring 1 cm on each side?
5. What is the volume of a box measuring $3 \mathrm{~cm} \times 6 \mathrm{~cm} \times 4 \mathrm{~cm}$?
6. What is the volume of a box measuring $8 \mathrm{~mm} \times 10 \mathrm{~cm} \times 5 \mathrm{~cm}$? (Be careful - units!)

Icm $^{\underline{3}}$ is equal to 1 mL or another way to put it is $1 \mathrm{~L}=1,000 \mathrm{~cm}^{\underline{3}}$. Convert your answers as required.
7. What is the volume in ml of a box measuring $2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 4 \mathrm{~cm}$?
8. What is the volume in ml of a cube measuring 5 cm on each side?
9. What is the volume in L of a box measuring $5 \mathrm{~cm} \times 20 \mathrm{~cm} \times 5 \mathrm{~cm}$?
10. What is the volume in L of a cube measuring 10 cm on each side?
11. What is the volume in L of a cube measuring 1 m on each side?
12. An iron cube measures $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$. What is its volume?
13. If the same iron cube weighs 7.9 kg , what is its density in $\mathrm{g} / \mathrm{cm}^{3}$?
14. What is the density of a cube of water measuring $2 \mathrm{~cm} \times 4 \mathrm{~cm} \times 1 \mathrm{~cm}$, with a mass of $8 g$?
15. What is the density of a block of wood measuring $.9 \mathrm{~cm} \times 2 \mathrm{cmX} 6 \mathrm{~cm}$ with a mass of 5.4 g
16. What has the greater density, a cube of water measuring $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$ and having a mass of 1 g , or a block of plastic measuring $2 \mathrm{cmX3} \mathrm{cmX1} \mathrm{~cm}$ with a mass of $4 g$?

Water has a density of approximately $1 \mathrm{~g} / \mathrm{cm} 3$. In fact icm3 of water used to be the standard for a gram. Objects will sink if their density is greater that water and will float if their density is less. For the following problems, decide if the block will sink or float.
17. A cube measuring 2 cm on each side weights 5 g , will it sink or float?
18. A block has a mass of 20 g and measures 2 cmX 4 cmX 2 cm , will it sink or float?
19. A hollow iron cube has measures 5 cm on each side and has a mass of 20 g . Will the iron cube sink or float?
20. A cube made of very old hard wood, has a mass of 45 g and measures 6 cm a side, will it sink or float?

